Robust Supporting Role in Coordinated Two-Robot Soccer Attack

نویسندگان

  • Mike Phillips
  • Manuela M. Veloso
چکیده

In spite of the great success of the fully autonomous distributed AIBO robot soccer league, a standing challenge is the creation of an effective planned, rather than emergent, coordinated two-robot attack, where one robot is the main attacker and goes to the ball and the other robot “supports the attack.” While the main attacker has its navigation conceptually driven by following the ball and aiming at scoring, the supporter objectives are not as clear. In this work, we investigate this distributed, limited perception, two-robot soccer attack with emphasis on the overlooked supporting robot role. We contribute a region-based positioning of the supporting robot for a possible pass or for the recovery of a lost ball. The algorithm includes a safe path navigation that does not endanger the possible scoring of the teammate attacker by crossing in between it and the goal. We then further present how the supporter enables pass evaluation, under the concept that it is in a better position to visually assess a pass than the attacker, which is focused on the ball and surrounded by the opponent defense. We show extensive statistically significant lab experiments, using our AIBO robots, which show the effectiveness of the positioning algorithm compared both to a previous supporter algorithm and to a single attacker. Additional experimental results provide solid evidence of the effectiveness of our passing evaluation algorithm. The algorithms are ready to incorporate in different RoboCup standard platform robot teams.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Soccer Goalkeeper Task Modeling and Analysis by Petri Nets

In a robotic soccer team, goalkeeper is an important challenging role, which has different characteristics from the other teammates. This paper proposes a new learning-based behavior model for a soccer goalkeeper robot by using Petri nets. The model focuses on modeling and analyzing, both qualitatively and quantitatively, for the goalkeeper role so that we have a model-based knowledge of the ta...

متن کامل

Study of Evolutionary and Swarm Intelligent Techniques for Soccer Robot Path Planning

Finding an optimal path for a robot in a soccer field involves different parameters such as the positions of the robot, positions of the obstacles, etc. Due to simplicity and smoothness of Ferguson Spline, it has been employed for path planning between arbitrary points on the field in many research teams. In order to optimize the parameters of Ferguson Spline some evolutionary or intelligent al...

متن کامل

Path Planning and Role Selection Mechanism for Soccer Robots

A real time vector field based path planning for attack mode robot and a Petri-net state diagram approach for robot’s role selection for robot soccer games are proposed in this paper Robot soccer game has dynamic environments as different robots intentionally affect the environment in unpredictable ways in a competitive setting. A soccer-playing robot has to take an appropriate action according...

متن کامل

Effective Mechatronic Models and Methods for Implementation an Autonomous Soccer Robot

  Omni directional mobile robots have been popularly employed in several applications especially in soccer player robots considered in Robocup competitions. However, Omni directional navigation system, Omni-vision system and solenoid kicking mechanism in such mobile robots have not ever been combined. This situation brings the idea of a robot with no head direction into existence, a comprehensi...

متن کامل

Vector Field Based Path Planning and Petri-Net Based Role Selection Mechanism with Q-Learning for the Soccer Robot System

The paper discusses a multi-agent system for robot-soccer. The system consists of a supervisory controller, and controllers for attack, defense and goalie robots. Real time vector field based path planning, Petri-net theory and Q-learning technique are used in the design. Robot-soccer system has a dynamic environment. A soccer robot has to take an appropriate decision based on environment situa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008